1.

i. Show that $\cos (\alpha+\beta)=\frac{1-\tan \alpha \tan \beta}{\sec \alpha \sec \beta}$.
ii. Hence show that $\cos 2 \alpha=\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}$.
iii. Hence or otherwise solve the equation $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1}{2}$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.
2. Express $6 \cos 2 \theta+\sin \theta$ in terms of $\sin \theta$.

Hence solve the equation $6 \cos 2 \theta+\sin \theta=0$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
3. In Fig. 5, triangles $A B C, A C D$ and $A D E$ are all right-angled, and angles $B A C, C A D$ and $D A E$ are all θ.
$\mathrm{AB}=x$ and $\mathrm{AE}=2 x$.

Fig. 5
i. Show that $\sec ^{3} \theta=2$.
ii. Hence show the ratio of lengths ED to $C B$ is $2^{\frac{2}{3}}: 1$.
4. Solve the equation $4 \tan \theta \tan 2 \theta=1$, for $0^{\circ} \theta<\theta<180^{\circ}$.
5. The day length, Y hours, is defined as the difference between the time the sun rises and the time the sun sets on a particular day. For Manchester, England, the following model is proposed for years which are not leap years.

$$
Y=a \sin \left(\frac{2 \pi}{365} t+b\right)+c,
$$

where t is the time in days since the start of the year and a, b and c are constants.
The maximum value of Y, which is 17.03, occurs on June 21 st, when $t=172$. The minimum value of Y, which is 7.47 , occurs on December 21st, when $t=355$.
(a) Show that $a=4.78$ and $c=12.25$.
(b) Determine the value of b correct to 3 significant figures.

On September 1st, when $t=244$, the day length is recorded as 13.76 hours.
(c) Show that the model is a good fit for this value.

In Reykjavik, Iceland, on June 21st the maximum day length was 21.14 hours and on December 21st the minimum day length was 4.12 hours.
(d) Use this information to refine the model for Manchester to produce a possible model for the day length in Reykjavik.

On September 1st the day length in Reykjavik is recorded as 14.56 hours.
(e) Determine whether your possible model for Reykjavik is a good fit for this value.
6. (See Insert for Jun18 64003.)
(a) In Fig. C 1.3 , angle $\mathrm{CBD}=\theta$. Show that angle CDA is also θ, as given in line 23 .
(b) Prove that $h=\sqrt{a b}$, as given in line 24 .

Mark scheme

Proofs and Problems

				(as from (i): $\sec ^{3} \theta=2$)
		$=2 / 2^{\frac{1}{3}}=2^{\frac{2}{3}} *$	B1	NB AG - dependent on all previous marks in (ii) - must be one step of intermediate working from $2 \cos \theta$ to given answer Examiner's Comments many candidates scored at least two marks for stating that ED = $2 x \sin \theta$ and $\mathrm{CB}=x \tan \theta$ although many then substituted in the angle Hom part i) and tried to derive the exact value of $2^{\frac{2}{3}}$ sing approximate values for these two lengths. Candidates who correctly ED $=2 \cos \theta$ found that $C B$ usually went on to obtain the correct ratio although many did not show sufficient steps of working to explain how they obtained the given answer.
		Total	7	
4		$\begin{aligned} & 4 \tan \theta \tan 2 \theta=1 \Rightarrow 4 \tan \theta \cdot \frac{2 \tan \theta}{1-\tan ^{2} \theta}=1 \\ & \Rightarrow 8 \operatorname{tanM}^{2} \theta=1-\tan ^{2} \theta \\ & \Rightarrow \tan ^{2} \theta=1 / 9 \\ & \tan \theta=1 / 3 \text { or }-1 / 3 \\ & \theta=18.43^{\circ} \text { or } 161.57^{\circ} \\ & \theta=18.43^{\circ} \text { and } 161.57^{\circ} \end{aligned}$	M1* M1dep* A1 A1 [4]	Use of double angle formula for tan to get an equation in tan - allow one sign slip only Re-arranges to $\tan ^{2} \theta=k$ where $k>0$ or attempt to solve $a \tan ^{2} \theta-b$ $=0$ where $b / a>0$ One correct answer to at least 1dp Both answers correct to at least 1dp SC A1A0 for answers which round to 0.322 and 2.82 (radians) Answers with no working can score B1 B1 (max 2/4) if correct Ignore additional solutions outside the range. If any additional solutions given inside the range of $0<\theta<180$ and full marks would have been awarded then remove last mark (so 3/4) Examiner's Comments It was pleasing to note that most candidates used the correct double angle formulae for $\tan 2 \theta$ to obtain a correct equation in terms of $\tan \theta$. However, some candidates over complicated the problem by re-writing tan in terms of \sin and cos and in these cases it was extremely rare for candidates to make any real significant progress. Of those that correctly re-arranged $4 \tan \theta\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)=1 \text { to } \tan ^{2} \theta=\frac{1}{9}$ it was disappointing that so many candidates then only considered the solutions of the equation $\tan \theta=\frac{1}{3}$

